For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

differentiation-pluripotent | ATLAS-D2K Center
RBK Logo

Differentiation of Human Pluripotent Stem Cells into Kidney Cell Lineages

Key Personnel

Oliver Wessely (PI)
Cleveland Clinic

Jan Jensen (PI)
Cleveland Clinic

  • Mike Bukys
    Cleveland Clinic
  • Uyen Tran
    Cleveland Clinic

Project Description

RELATED DATA

Kidney function is based on the intricate interplay of a range of highly specialized cells. Thus, any approach in rebuilding the kidney depends on the generation of the right cell types in sufficient amounts and purity. This project will address this critical need. We will use state-of-the-art technology and a Quality-by-Design approach to guide a multistep differentiation process of human pluripotent stem cells obtaining pure populations of functional kidney cells. We will then characterize those cells for their ability to assemble into kidney-like structures and perform some of the critical functions executed by a healthy kidney.

Publications

  1. Podocyte Aging: Why and How Getting Old Matters

    Shankland, Stuart; Wang, Yuliang; Shaw, Andrey; Vaughan, Joshua; Pippin, Jeffrey; Wessely, Oliver. Journal of the American Society of Nephrology . September 2021.

    The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population’s increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.

  2. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.

  1. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.