For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

progenitor-niche-signals | ATLAS-D2K Center
RBK Logo

Application of Progenitor Niche Signals to Ex Vivo Nephrogenesis

Key Personnel

Leif Oxburgh (PI)
Maine Medical Center

  • Thomas Carroll (PI)
    University of Texas Southwestern
  • Ondine Cleaver (PI)
    University of Texas Southwestern
  • David Kaplan (PI)
    Tufts University

Project Description

In this multi-PI project we aim to understand how the three major cell types of the developing kidney can be integrated on a scaffold to reproduce key features of the kidney. Summaries of the 4 focus areas within the project are provided below. These lines of investigation are being pursued in parallel, with the 4 participating laboratories acting as a single integrated research group with the unified goal of developing engraftable laboratory-grown kidney tissue.

At the 56 minute mark of this video of Dr. Francis Collins' testimony for the Senate Health Committee, he refers to the Regenerative Medicine Innovation Project (RMIP) supplement to this project and work being done in kidney regeneration.

Focus on: Stromal Biology

Thomas Carroll
PI: Thomas Carroll
University of Texas Southwestern

Key Personnel: Alicia Fessler, Ashwani Kumar Gupta, Harini Ramalingam

Optimal kidney functions require complex patterning of both the nephrons and blood vessels. We study how the distinct interstitial microenvironments that exist within the embryonic and adult kidney affect the development and function of this organ. Our ultimate goal is to define the stromal signals that promote the growth of 3-D, physiologically responsive nephrons with integrated vasculature in biological scaffolds.

  1. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis.

    Ryan, Anne R.; England, Alicia R.; Chaney, Christopher P.; Cowdin, Mitzy A.; Hiltabidle, Max; Daniel, Edward; Gupta, Ashwani Kumar; Oxburgh, Leif; Carroll, Thomas J.; Cleaver, Ondine. Developmental biology . 477:98–116. September 2021.

    Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.

  2. Identification and characterization of cellular heterogeneity within the developing renal interstitium

    AR, England; CP, Chaney; A, Das; M, Patel; A, Malewska; D, Armendariz; GC, Hon; DW, Strand; KA, Drake; TJ, Carroll. Development . 147(15). August 2020.

    Kidney formation requires the coordinated growth of multiple cell types including the collecting ducts, nephrons, vasculature and interstitium. There is a long-held belief that interactions between progenitors of the collecting ducts and nephrons are primarily responsible for kidney development. However, over the last several years, it has become increasingly clear that multiple aspects of kidney development require signaling from the interstitium. How the interstitium orchestrates these various roles is poorly understood. Here, we show that during development the interstitium is a highly heterogeneous patterned population of cells that occupies distinct positions correlated to the adjacent parenchyma. Our analysis indicates that the heterogeneity is not a mere reflection of different stages in a linear developmental trajectory but instead represents several novel differentiated cell states. Further, we find that β-catenin has a cell autonomous role in the development of a medullary subset of the interstitium and that this non-autonomously affects the development of the adjacent epithelia. These findings suggest the intriguing possibility that the different interstitial subtypes may create microenvironments that play unique roles in development of the adjacent epithelia and endothelia.

  3. Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids.

    A, Kumar Gupta; P, Sarkar; JA, Wertheim; X, Pan; TJ, Carroll; L., Oxburgh. Communications biology . 3(1):231. May 2020.

    A fundamental challenge in emulating kidney tissue formation through directed differentiation of human pluripotent stem cells is that kidney development is iterative, and to reproduce the asynchronous mix of differentiation states found in the fetal kidney we combined cells differentiated at different times in the same organoid. Asynchronous mixing promoted nephrogenesis, and heterochronic organoids were well vascularized when engrafted under the kidney capsule. Micro-CT and injection of a circulating vascular marker demonstrated that engrafted kidney tissue was connected to the systemic circulation by 2 weeks after engraftment. Proximal tubule glucose uptake was confirmed, but despite these promising measures of graft function, overgrowth of stromal cells prevented long-term study. We propose that this is a technical feature of the engraftment procedure rather than a specific shortcoming of the directed differentiation because kidney organoids derived from primary cells and whole embryonic kidneys develop similar stromal overgrowth when engrafted under the kidney capsule.

  4. Spatiotemporal heterogeneity and patterning of developing renal blood vessels

    Daniel, E; Azizoglu, DB; Ryan, AR; Walji, TA; Chaney, CP; Sutton, GI; Carroll, TJ; Marciano, DK; Cleaver, O. Angiogenesis . April 2018.

    The kidney vasculature facilitates the excretion of wastes, the dissemination of hormones, and the regulation of blood chemistry. To carry out these diverse functions, the vasculature is regionalized within the kidney and along the nephron. However, when and how endothelial regionalization occurs remains unknown. Here, we examine the developing kidney vasculature to assess its 3-dimensional structure and transcriptional heterogeneity. First, we observe that endothelial cells (ECs) grow coordinately with the kidney bud as early as E10.5, and begin to show signs of speci cation by E13.5 when the rst arteries can be identi ed. We then focus on how ECs pattern and remodel with respect to the developing nephron and collecting duct epithelia. ECs circumscribe nephron progenitor populations at the distal tips of the ureteric bud (UB) tree and form stereotyped cruciform structures around each tip. Beginning at the renal vesicle (RV) stage, ECs form a continuous plexus around developing nephrons. The endothelial plexus envelops and elaborates with the maturing nephron, becoming preferentially enriched along the early distal tubule. Lastly, we perform transcriptional and immuno uorescent screens to characterize spatiotemporal heterogeneity in the kidney vasculature and identify novel regionally enriched genes. A better understanding of development of the kidney vasculature will help instruct engineering of properly vascularized ex vivo kidneys and evaluate diseased kidneys.

  5. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.

Focus on: Vascular Biology

Ondine Cleaver
PI: Ondine Cleaver
University of Texas Southwestern

Key Personnel: Edward Daniel

Nascent blood vessels develop in a coordinated manner with kidney nephrons. We aim to establish a molecular signature for endothelial cells (ECs) in the developing kidney, from nephron stem cell generation to nephron tubule differentiation, throughout embryonic development and into adulthood. Preliminary observations reveal distinct heterogeneity in EC gene expression in the developing kidney; however its functional impact is unknown. We will define when and where blood vessels appear during nephron formation, distinguishing vasculogenic versus angiogenic events. We will test necessity and sufficiency of endothelial signals on nephron progenitor self-renewal versus differentiation. We will also determine whether specific, regionally expressed factors play functional roles in either helping to sustain progenitors or trigger NPC expansion versus differentiation.

RELATED DATA

  1. Chapter Seven - Plumbing our organs: Lessons from vascular development to instruct lab generated tissues

    Ryan, Anne R.; Cleaver, Ondine. Current Topics in Developmental Biology. 148:165–194. 2022.

    The formation, growth and maintenance of our organs, such as our kidneys or pancreas, requires their coordinated growth alongside the intricate vasculature that pervades them. Blood vessels course through nearly every tissue in our bodies, facilitating the essential exchange of gases, nutrition and wastes, as well as the rapid circulation of hormones and other signaling molecules. Endothelial cells (ECs) that line all of our blood vessels are therefore the gatekeepers for communication between the circulation and organ-specific cell types. We and many others have sought to understand: (1) how endothelial cell progenitors initially assemble to form blood vessels in the embryo, and (2) how the embryonic vascular tree expands to perfuse growing organs. Here, we review what we have learned from embryonic blood vessels and how this knowledge instructs our approaches to vascularize laboratory generated tissues, such as organoids. We will assess our general understanding of blood vessel formation, and discuss recent studies of the growing kidney vasculature. Furthermore, we will assess the challenges and limitations faced by organoid technologies, including the difficulties in achieving the patterned vascular network that is essential to organ function. Lastly, we will then review recent studies of kidney organoid blood vessels and propose approaches that improve vascularization. Understanding the ontogeny of organ-specific vasculatures will help propel regenerative therapeutic approaches.

  2. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis.

    Ryan, Anne R.; England, Alicia R.; Chaney, Christopher P.; Cowdin, Mitzy A.; Hiltabidle, Max; Daniel, Edward; Gupta, Ashwani Kumar; Oxburgh, Leif; Carroll, Thomas J.; Cleaver, Ondine. Developmental biology . 477:98–116. September 2021.

    Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.

  3. Spatiotemporal heterogeneity and patterning of developing renal blood vessels

    Daniel, E; Azizoglu, DB; Ryan, AR; Walji, TA; Chaney, CP; Sutton, GI; Carroll, TJ; Marciano, DK; Cleaver, O. Angiogenesis . April 2018.

    The kidney vasculature facilitates the excretion of wastes, the dissemination of hormones, and the regulation of blood chemistry. To carry out these diverse functions, the vasculature is regionalized within the kidney and along the nephron. However, when and how endothelial regionalization occurs remains unknown. Here, we examine the developing kidney vasculature to assess its 3-dimensional structure and transcriptional heterogeneity. First, we observe that endothelial cells (ECs) grow coordinately with the kidney bud as early as E10.5, and begin to show signs of speci cation by E13.5 when the rst arteries can be identi ed. We then focus on how ECs pattern and remodel with respect to the developing nephron and collecting duct epithelia. ECs circumscribe nephron progenitor populations at the distal tips of the ureteric bud (UB) tree and form stereotyped cruciform structures around each tip. Beginning at the renal vesicle (RV) stage, ECs form a continuous plexus around developing nephrons. The endothelial plexus envelops and elaborates with the maturing nephron, becoming preferentially enriched along the early distal tubule. Lastly, we perform transcriptional and immuno uorescent screens to characterize spatiotemporal heterogeneity in the kidney vasculature and identify novel regionally enriched genes. A better understanding of development of the kidney vasculature will help instruct engineering of properly vascularized ex vivo kidneys and evaluate diseased kidneys.

  4. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.

Focus on: Biomaterials

David Kaplan
PI: David Kaplan
Tufts University

Key Personnel: Shreyas Jadhav, Sophia Szymkowiak

We focus on the design and study of 3D scaffolds to support kidney cell and tissue needs. Silk protein scaffolds provide our framework due to the versatility and utility towards cell and tissue goals, including porous features for transport, tunable mechanical properties, support for long term tissue growth, controlled/slow degradation and an absence of cell-specific epitopes for signaling. We will use silk biomaterial scaffold systems to provide structure and, with the addition of appropriate ECM components, signaling cues for nephrogenesis via cells from our project collaborators (Leif, Tom, Ondine). The goal is to utilize these scaffolds to engineer modular, compartmentalized systems that support and guide nephron progenitor cell (NPC) maintenance and differentiation, and cellular signaling between stromal cells, cells of the vasculature, and NPCs.

RELATED DATA

  1. Polycystin 2 regulates mitochondrial Ca(2+) signaling, bioenergetics, and dynamics through mitofusin 2.

    Kuo, Ivana Y.; Brill, Allison L.; Lemos, Fernanda O.; Jiang, Jason Y.; Falcone, Jeffrey L.; Kimmerling, Erica P.; Cai, Yiqiang; Dong, Ke; Kaplan, David L.; Wallace, Darren P.; Hofer, Aldebaran M.; Ehrlich, Barbara E. Sci Signal . 12(580). May 2019.

    Mitochondria and the endoplasmic reticulum (ER) have an intimate functional relationship due to tethering proteins that bring their membranes in close (~30 nm) apposition. One function of this interorganellar junction is to increase the efficiency of Ca(2+) transfer into mitochondria, thus stimulating mitochondrial respiration. Here, we showed that the ER cation-permeant channel polycystin 2 (PC2) functions to reduce mitochondria-ER contacts. In cell culture models, PC2 knockdown led to a 50% increase in mitofusin 2 (MFN2) expression, an outer mitochondrial membrane GTPase. Live-cell super-resolution and electron microscopy analyses revealed enhanced MFN2-dependent tethering between the ER and mitochondria in PC2 knockdown cells. PC2 knockdown also led to increased

  2. Scaffolding kidney organoids on silk.

    Gupta, Ashwani Kumar; Coburn, Jeannine M.; Davis-Knowlton, Jessica; Kimmerling, Erica; Kaplan, David L.; Oxburgh, Leif. J Tissue Eng Regen Med . 13(5):812–822. May 2019.

    End stage kidney disease affects hundreds of thousands of patients in the United States. The therapy of choice is kidney replacement, but availability of organs is limited, and alternative sources of tissue are needed. Generation of new kidney tissue in the laboratory has been made possible through pluripotent cell reprogramming and directed differentiation. In current procedures, aggregates of cells known as organoids are grown either submerged or at the air-liquid interface. These studies have demonstrated that kidney tissue can be generated from pluripotent stem cells, but they also identify limitations. The first is that perfusion of cell aggregates is limited, restricting the size to which they can be grown. The second is that aggregates lack the structural integrity required for convenient engraftment and suturing or adhesion to regions of kidney injury. In this study, we evaluated the capacity of silk to serve as a support for the growth and differentiation of kidney tissue from primary cells and from human induced pluripotent stem cells. We find that cells can differentiate to epithelia characteristic of the developing kidney on this material and that these structures are maintained following engraftment under the capsule of the adult kidney. Blood vessel investment can be promoted by the addition of vascular endothelial growth factor to the scaffold, but the proliferation of stromal cells within the graft presents a challenge, which will require some readjustment of cell growth and differentiation conditions. In summary, we find that silk can be used to support growth of stem cell derived kidney tissue.

  3. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.

Focus on: Nephron Progenitor Biology

Leif Oxburgh
PI: Leif Oxburgh
Maine Medical Center

Key Personnel: Prasenjit Sarkar

We study the population dynamics of the nephron progenitor cell population with the aim of identifying the sub-populations that are best suited to new tissue formation. This in-depth study of the micro anatomy of the nephron progenitor cell niche involves understanding proliferation, adhesion, and signaling properties of the various nephron progenitor sub populations, defining their growth properties on biological scaffolds, and characterizing the influence of stromal and vascular cells on them.

RELATED DATA

  1. Chapter Nine - Growth control of the kidney

    Oxburgh, Leif. Current Topics in Developmental Biology. 148:237–263. 2022.

    The functional mass of kidney tissue in an adult is an important determinant of human health. Kidney formation during development is an essential determinant of the final nephron endowment of the adult organ, and no evidence has been reported that mice or humans are able to generate new nephrons after the developmental period. Mechanisms controlling organ growth after development are essential to establish the final adult organ size. The potential for organ growth is maintained in adult life and the size of one kidney may be significantly increased by loss of the contralateral kidney. The mouse has provided a model system for investigators to critically explore genetic, cell biological, and hormonal control of developmental and juvenile kidney growth. This article reviews three basic aspects of kidney size regulation: (1) Mechanisms that control nephron formation and how these are altered by the cessation of nephrogenesis at the end of the developmental period. (2) Applicability of the general model for growth hormone-insulin like growth factor control to kidney growth both pre- and postnatally. (3) Commonalities between mechanisms of juvenile kidney growth and the compensatory growth that is stimulated in adult life by reduction of kidney mass. Understanding the mechanisms that determine set-points for cell numbers and size in the kidney may inform ongoing efforts to generate kidney tissue from stem cells.

  2. Smad4 controls proliferation of interstitial cells in the neonatal kidney

    McCarthy, Sarah S.; Karolak, Michele; Oxburgh, Leif. Development . 149(1):dev199984. January 2022.

    ABSTRACT Expansion of interstitial cells in the adult kidney is a hallmark of chronic disease, whereas their proliferation during fetal development is necessary for organ formation. An intriguing difference between adult and neonatal kidneys is that the neonatal kidney has the capacity to control interstitial cell proliferation when the target number has been reached. In this study, we define the consequences of inactivating the TGFβ/Smad response in the mouse interstitial cell lineage. We find that pathway inactivation through loss of Smad4 leads to overproliferation of interstitial cells regionally in the kidney medulla. Analysis of markers for BMP and TGFβ pathway activation reveals that loss of Smad4 primarily reduces TGFβ signaling in the interstitium. Whereas TGFβ signaling is reduced in these cells, marker analysis shows that Wnt/β-catenin signaling is increased. Our analysis supports a model in which Wnt/β-catenin-mediated proliferation is attenuated by TGFβ/Smad to ensure that proliferation ceases when the target number of interstitial cells has been reached in the neonatal medulla.

  3. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis.

    Ryan, Anne R.; England, Alicia R.; Chaney, Christopher P.; Cowdin, Mitzy A.; Hiltabidle, Max; Daniel, Edward; Gupta, Ashwani Kumar; Oxburgh, Leif; Carroll, Thomas J.; Cleaver, Ondine. Developmental biology . 477:98–116. September 2021.

    Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.

  4. An efficient method to generate kidney organoids at the air-liquid interface.

    Gupta, Ashwani Kumar; Ivancic, David Z.; Naved, Bilal A.; Wertheim, Jason A.; Oxburgh, Leif. Journal of biological methods . 8(2):e150. June 2021.

    The prevalence of kidney dysfunction continues to increase worldwide, driving the need to develop transplantable renal tissues. The kidney develops from four major renal progenitor populations: nephron epithelial, ureteric epithelial, interstitial and endothelial progenitors. Methods have been developed to generate kidney organoids but few or dispersed tubular clusters within the organoids hamper its use in regenerative applications. Here, we describe a detailed protocol of asynchronous mixing of kidney progenitors using organotypic culture conditions to generate kidney organoids tightly packed with tubular clusters and major renal structures including endothelial network and functional proximal tubules. This protocol provides guidance in the culture of human embryonic stem cells from a National Institute of Health-approved line and their directed differentiation into kidney organoids. Our 18-day protocol provides a rapid method to generate kidney organoids that facilitate the study of different nephrological events including in vitro tissue development, disease modeling and chemical screening. However, further studies are required to optimize the protocol to generate additional renal-specific cell types, interconnected nephron segments and physiologically functional renal tissues.

  5. Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids.

    A, Kumar Gupta; P, Sarkar; JA, Wertheim; X, Pan; TJ, Carroll; L., Oxburgh. Communications biology . 3(1):231. May 2020.

    A fundamental challenge in emulating kidney tissue formation through directed differentiation of human pluripotent stem cells is that kidney development is iterative, and to reproduce the asynchronous mix of differentiation states found in the fetal kidney we combined cells differentiated at different times in the same organoid. Asynchronous mixing promoted nephrogenesis, and heterochronic organoids were well vascularized when engrafted under the kidney capsule. Micro-CT and injection of a circulating vascular marker demonstrated that engrafted kidney tissue was connected to the systemic circulation by 2 weeks after engraftment. Proximal tubule glucose uptake was confirmed, but despite these promising measures of graft function, overgrowth of stromal cells prevented long-term study. We propose that this is a technical feature of the engraftment procedure rather than a specific shortcoming of the directed differentiation because kidney organoids derived from primary cells and whole embryonic kidneys develop similar stromal overgrowth when engrafted under the kidney capsule.

  6. Kidney-in-a-lymph node: A novel organogenesis assay to model human renal development and test nephron progenitor cell fates.

    Francipane, Maria Giovanna; Han, Bing; Oxburgh, Leif; Sims-Lucas, Sunder; Li, Zhongwei; Lagasse, Eric. J Tissue Eng Regen Med . July 2019.

    Stem cell-derived organoids are emerging as sophisticated models for studying development and disease and as potential sources for developing organ substitutes. Unfortunately, although organoids containing renal structures have been generated from mouse and human pluripotent stem cells, there are still critical unanswered questions that are difficult to attain via in vitro systems, including whether these nonvascularized organoids have a stable and physiologically relevant phenotype or whether a suitable transplantation site for long-term in vivo studies can be identified. Even orthotopic engraftment of organoid cultures in the adult does not provide an environment conducive to vascularization and functional differentiation. Previously, we showed that the lymph node offers an alternative transplantation site where mouse metanephroi can differentiate into mature renal structures with excretory, homeostatic, and endocrine functions. Here, we show that the lymph node lends itself well as a niche to also grow human primary kidney rudiments and can additionally be viewed as a platform to interrogate emerging renal organoid cultures. Our study has a wide-ranging impact for tissue engineering approaches to rebuild functional tissues in vivo including-but not limited to-the kidney.

  7. Scaffolding kidney organoids on silk.

    Gupta, Ashwani Kumar; Coburn, Jeannine M.; Davis-Knowlton, Jessica; Kimmerling, Erica; Kaplan, David L.; Oxburgh, Leif. J Tissue Eng Regen Med . 13(5):812–822. May 2019.

    End stage kidney disease affects hundreds of thousands of patients in the United States. The therapy of choice is kidney replacement, but availability of organs is limited, and alternative sources of tissue are needed. Generation of new kidney tissue in the laboratory has been made possible through pluripotent cell reprogramming and directed differentiation. In current procedures, aggregates of cells known as organoids are grown either submerged or at the air-liquid interface. These studies have demonstrated that kidney tissue can be generated from pluripotent stem cells, but they also identify limitations. The first is that perfusion of cell aggregates is limited, restricting the size to which they can be grown. The second is that aggregates lack the structural integrity required for convenient engraftment and suturing or adhesion to regions of kidney injury. In this study, we evaluated the capacity of silk to serve as a support for the growth and differentiation of kidney tissue from primary cells and from human induced pluripotent stem cells. We find that cells can differentiate to epithelia characteristic of the developing kidney on this material and that these structures are maintained following engraftment under the capsule of the adult kidney. Blood vessel investment can be promoted by the addition of vascular endothelial growth factor to the scaffold, but the proliferation of stromal cells within the graft presents a challenge, which will require some readjustment of cell growth and differentiation conditions. In summary, we find that silk can be used to support growth of stem cell derived kidney tissue.

  8. Long-Term Culture of Nephron Progenitor Cells Ex Vivo.

    Brown, Aaron C.; Gupta, Ashwani K.; Oxburgh, Leif. Methods Mol Biol . 1926:63–75. 2019.

    Nephrons differentiate from the cap mesenchyme of the fetal kidney. Nephron progenitor cells that populate the cap mesenchyme efficiently balance self-renewal and epithelial differentiation to enable repeated rounds of nephron formation during development. Here we describe a method to isolate and propagate these cells from the embryonic mouse kidney. Using this method, nephron progenitor cells from a single litter of mice can be propagated to hundreds of millions of cells that express appropriate markers of the undifferentiated state and retain epithelial differentiation capacity in vitro.

  9. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.