For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

identifying-phenotype-factors | ATLAS-D2K Center
RBK Logo

Identifying Kidney Cell Phenotype Factors Using Single Cell RNA Sequencing

Key Personnel

Junhyong Kim (PI)
University of Pennsylvania

James Eberwine (PI)
University of Pennsylvania

  • Susanna Nazarian
    University of Pennsylvania

Project Description

The goal of the Penn project is to develop molecular biology and informatics tools to identify key regulatory factors that determine kidney cell phenotypes. Single cell resolution transcriptome data can reveal cryptic cell types as well as help identify regulatory systems related to cell phenotypes. We hypothesize that cell phenotype determining genes are often at low to moderate abundance in a cell, making them difficult to approach using current methods. The Penn group will develop novel molecular biology techniques to enrich single cell transcriptomes for low abundance genes. We will also develop informatics tools that will help identify targets for trans-differentiation experiments, leveraging single cell level measurements.

Publications

  1. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells

    Liu, Chang; Tate, Tiffany; Batourina, Ekatherina; Truschel, Steven T.; Potter, Steven; Adam, Mike; Xiang, Tina; Picard, Martin; Reiley, Maia; Schneider, Kerry; Tamargo, Manuel; Lu, Chao; Chen, Xiao; He, Jing; Kim, Hyunwoo; Mendelsohn, Cathy Lee. Nature Communications . 10:4589. October 2019.

    The urothelium is an epithelial barrier lining the bladder that protects against infection, fluid exchange and damage from toxins. The nuclear receptor Pparg promotes urothelial differentiation in vitro, and Pparg mutations are associated with bladder cancer. However, the function of Pparg in the healthy urothelium is unknown. Here we show that Pparg is critical in urothelial cells for mitochondrial biogenesis, cellular differentiation and regulation of inflammation in response to urinary tract infection (UTI). Superficial cells, which are critical for maintaining the urothelial barrier, fail to mature in Pparg mutants and basal cells undergo squamous-like differentiation. Pparg mutants display persistent inflammation after UTI, and Nf-KB, which is transiently activated in response to infection in the wild type urothelium, persists for months. Our observations suggest that in addition to its known roles in adipogegnesis and macrophage differentiation, that Pparg-dependent transcription plays a role in the urothelium controlling mitochondrial function development and regeneration.

  2. Edar is a downstream target of beta-catenin and drives collagen accumulation in the mouse prostate

    Wegner, Kyle A.; Mehta, Vatsal; Johansson, Jeanette A.; Mueller, Brett R.; Keil, Kimberly P.; Abler, Lisa L.; Marker, Paul C.; Taketo, M. Mark; Headon, Denis J.; Vezina, Chad M.. Biology Open . 8(3):bio037945. March 2019.

    Beta-catenin (CTNNB1) directs ectodermal appendage spacing by activating ectodysplasin A receptor (EDAR) transcription, but whether CTNNB1 acts by a similar mechanism in the prostate, an endoderm-derived tissue, is unclear. Here we examined the expression, function, and CTNNB1 dependence of the EDAR pathway during prostate development. In situ hybridization studies reveal EDAR pathway components including Wnt10b in the developing prostate and localize these factors to prostatic bud epithelium where CTNNB1 target genes are co-expressed. We used a genetic approach to ectopically activate CTNNB1 in developing mouse prostate and observed focal increases in Edar and Wnt10b mRNAs. We also used a genetic approach to test the prostatic consequences of activating or inhibiting Edar expression. Edar overexpression does not visibly alter prostatic bud formation or branching morphogenesis, and Edar expression is not necessary for either of these events. However, Edar overexpression is associated with an abnormally thick and collagen-rich stroma in adult mouse prostates. These results support CTNNB1 as a transcriptional activator of Edar and Wnt10b in the developing prostate and demonstrate Edar is not only important for ectodermal appendage patterning but also influences collagen organization in adult prostates.This article has an associated First Person interview with the first author of the paper.

  3. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Lindström, NO; McMahon, JA; Guo, J; Tran, T; Guo, Q; Rutledge, E; Parvez, RK; Saribekyan, G; Schuler, RE; Liao, C; Kim, AD; Abdelhalim, A; Ruffins, SW; Thornton, ME; Basking, L; Grubbs, B; Kesselman, C; McMahon, AP. J Am Soc Nephrol . February 2018.

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.

  4. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney

    Lindström, NO; Guo, J; Kim, AD; Tran, T; Guo, Q; De Sena Brandine, G; Ransick, A; Parvez, RK; Thornton, ME; Basking, L; Grubbs, B; McMahon, JA; Smith, AD; McMahon, AP. J Am Soc Nephrol . February 2018.

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.

  5. Multi-omics integration in the age of million single-cell data

    Miao, Zhen; Humphreys, Benjamin D.; McMahon, Andrew P.; Kim, Junhyong. Nature Reviews Nephrology . 17(11):710–724. November 2021.

    An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis.

  6. In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.

    Tran, Tracy; Lindstrom, Nils O.; Ransick, Andrew; De Sena Brandine, Guilherme; Guo, Qiuyu; Kim, Albert D.; Der, Balint; Peti-Peterdi, Janos; Smith, Andrew D.; Thornton, Matthew; Grubbs, Brendan; McMahon, Jill A.; McMahon, Andrew P. Dev Cell . 50(1):102–116.e6. July 2019.

    The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.

  7. Polycystin 2 regulates mitochondrial Ca(2+) signaling, bioenergetics, and dynamics through mitofusin 2.

    Kuo, Ivana Y.; Brill, Allison L.; Lemos, Fernanda O.; Jiang, Jason Y.; Falcone, Jeffrey L.; Kimmerling, Erica P.; Cai, Yiqiang; Dong, Ke; Kaplan, David L.; Wallace, Darren P.; Hofer, Aldebaran M.; Ehrlich, Barbara E. Sci Signal . 12(580). May 2019.

    Mitochondria and the endoplasmic reticulum (ER) have an intimate functional relationship due to tethering proteins that bring their membranes in close (~30 nm) apposition. One function of this interorganellar junction is to increase the efficiency of Ca(2+) transfer into mitochondria, thus stimulating mitochondrial respiration. Here, we showed that the ER cation-permeant channel polycystin 2 (PC2) functions to reduce mitochondria-ER contacts. In cell culture models, PC2 knockdown led to a 50% increase in mitofusin 2 (MFN2) expression, an outer mitochondrial membrane GTPase. Live-cell super-resolution and electron microscopy analyses revealed enhanced MFN2-dependent tethering between the ER and mitochondria in PC2 knockdown cells. PC2 knockdown also led to increased

  8. Scaffolding kidney organoids on silk.

    Gupta, Ashwani Kumar; Coburn, Jeannine M.; Davis-Knowlton, Jessica; Kimmerling, Erica; Kaplan, David L.; Oxburgh, Leif. J Tissue Eng Regen Med . 13(5):812–822. May 2019.

    End stage kidney disease affects hundreds of thousands of patients in the United States. The therapy of choice is kidney replacement, but availability of organs is limited, and alternative sources of tissue are needed. Generation of new kidney tissue in the laboratory has been made possible through pluripotent cell reprogramming and directed differentiation. In current procedures, aggregates of cells known as organoids are grown either submerged or at the air-liquid interface. These studies have demonstrated that kidney tissue can be generated from pluripotent stem cells, but they also identify limitations. The first is that perfusion of cell aggregates is limited, restricting the size to which they can be grown. The second is that aggregates lack the structural integrity required for convenient engraftment and suturing or adhesion to regions of kidney injury. In this study, we evaluated the capacity of silk to serve as a support for the growth and differentiation of kidney tissue from primary cells and from human induced pluripotent stem cells. We find that cells can differentiate to epithelia characteristic of the developing kidney on this material and that these structures are maintained following engraftment under the capsule of the adult kidney. Blood vessel investment can be promoted by the addition of vascular endothelial growth factor to the scaffold, but the proliferation of stromal cells within the graft presents a challenge, which will require some readjustment of cell growth and differentiation conditions. In summary, we find that silk can be used to support growth of stem cell derived kidney tissue.

  9. Renal reabsorption in 3D vascularized proximal tubule models

    Lin, Neil Y. C.; Homan, Kimberly A.; Robinson, Sanlin S.; Kolesky, David B.; Duarte, Nathan; Moisan, Annie; Lewis, Jennifer A. Proceedings of the National Academy of Sciences . 116(12):5399–5404. 2019.

    Current kidney-on-chip models lack the 3D geometry, complexity, and functionality vital for recapitulating in vivo renal tissue. We report the fabrication and perfusion of 3D vascularized proximal tubules embedded within an engineered ECM that exhibit active reabsorption of solutes via tubular–vascular exchange. Using this model, we quantified albumin and glucose reabsorption over time. We also studied hyperglycemic effects in the absence and presence of a glucose transport inhibitor. Our 3D kidney tissue provides a platform for in vitro studies of kidney function, disease modeling, and pharmacology.Three-dimensional renal tissues that emulate the cellular composition, geometry, and function of native kidney tissue would enable fundamental studies of filtration and reabsorption. Here, we have created 3D vascularized proximal tubule models composed of adjacent conduits that are lined with confluent epithelium and endothelium, embedded in a permeable ECM, and independently addressed using a closed-loop perfusion system to investigate renal reabsorption. Our 3D kidney tissue allows for coculture of proximal tubule epithelium and vascular endothelium that exhibits active reabsorption via tubular–vascular exchange of solutes akin to native kidney tissue. Using this model, both albumin uptake and glucose reabsorption are quantified as a function of time. Epithelium–endothelium cross-talk is further studied by exposing proximal tubule cells to hyperglycemic conditions and monitoring endothelial cell dysfunction. This diseased state can be rescued by administering a glucose transport inhibitor. Our 3D kidney tissue provides a platform for in vitro studies of kidney function, disease modeling, and pharmacology.

  10. Flow-enhanced vascularization and maturation of kidney organoids in vitro

    Homan, Kimberly A.; Gupta, Navin; Kroll, Katharina T.; Kolesky, David B.; Skylar-Scott, Mark; Miyoshi, Tomoya; Mau, Donald; Valerius, M. Todd; Ferrante, Thomas; Bonventre, Joseph V.; Lewis, Jennifer A.; Morizane, Ryuji. Nature Methods . February 2019.

    Kidney organoids derived from human pluripotent stem cells have glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which expands their endogenous pool of endothelial progenitor cells and generates vascular networks with perfusable lumens surrounded by mural cells. We found that vascularized kidney organoids cultured under flow had more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression compared with that in static controls. Glomerular vascular development progressed through intermediate stages akin to those involved in the embryonic mammalian kidney’s formation of capillary loops abutting foot processes. The association of vessels with these compartments was reduced after disruption of the endogenous VEGF gradient. The ability to induce substantial vascularization and morphological maturation of kidney organoids in vitro under flow opens new avenues for studies of kidney development, disease, and regeneration.

  11. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Lindström, NO; McMahon, JA; Guo, J; Tran, T; Guo, Q; Rutledge, E; Parvez, RK; Saribekyan, G; Schuler, RE; Liao, C; Kim, AD; Abdelhalim, A; Ruffins, SW; Thornton, ME; Basking, L; Grubbs, B; Kesselman, C; McMahon, AP. J Am Soc Nephrol . February 2018.

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.

  12. Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development

    Kim, YK; Refaeli, I; Brooks, CR; Jing, P; Gulieva, RE; Hughes, MR; Cruz, NM; Liu, Y; Churchill, AJ; Wang, Y; Fu, H; Pippin, JW; Lin, LY; Shankland, SJ; Vogl, AW; McNagny, KM; Freedman, BS. Stem Cells . 35(12):2366–2378. December 2017.

    A critical event during kidney organogenesis is the differentiation of podocytes, specialized epithelial cells that filter blood plasma to form urine. Podocytes derived from human pluripotent stem cells (hPSC-podocytes) have recently been generated in nephron-like kidney organoids, but the developmental stage of these cells and their capacity to reveal disease mechanisms remains unclear. Here, we show that hPSC-podocytes phenocopy mammalian podocytes at the capillary loop stage (CLS), recapitulating key features of ultrastructure, gene expression, and mutant phenotype. hPSC-podocytes in vitro progressively establish junction-rich basal membranes (nephrin+ podocin+ ZO-1+ ) and microvillus-rich apical membranes (podocalyxin+ ), similar to CLS podocytes in vivo. Ultrastructural, biophysical, and transcriptomic analysis of podocalyxin-knockout hPSCs and derived podocytes, generated using CRISPR/Cas9, reveals defects in the assembly of microvilli and lateral spaces between developing podocytes, resulting in failed junctional migration. These defects are phenocopied in CLS glomeruli of podocalyxin-deficient mice, which cannot produce urine, thereby demonstrating that podocalyxin has a conserved and essential role in mammalian podocyte maturation. Defining the maturity of hPSC-podocytes and their capacity to reveal and recapitulate pathophysiological mechanisms establishes a powerful framework for studying human kidney disease and regeneration. Stem Cells 2017;35:2366-2378